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Decay of the Two-Point Function in One-Dimensional
O(N ) Spin Models with Long-Range Interactions
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Using Griffiths and Lieb�Simon type inequalities, it is shown that the two-point
function of ferromagnetic spin models with N components in one dimension
decays like the interaction J(n)tn&# provided that 1�N�4 and T>Tc .
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1. INTRODUCTION AND MAIN RESULT

As is well known, classical spin models with a continuous symmetry in two
dimensions lead to scale invariant field theories with the nonlinear sigma-
model action

1
2T | d 2x(%s(x))2 (1.1)

where s is a unit spin with N components. The resulting behaviour dis-
tinguishes between an abelian, N=2 plane rotor, and a non-abelian sym-
metry group, N�3. In the latter case the two-point correlation, g(x)=
(s(x) } s(0)) decays exponentially at any finite temperature with a finite
correlation length !(T )texp[2?�(N&2)T].(1, 2) On the other hand for an
XY-symmetry, the exponential decay holds only above the Kosterlitz�
Thouless critical temperature TKT . The phase at low temperatures exhibits

1037

0022-4715�99�0300-1037�16.00�0 � 1999 Plenum Publishing Corporation

1 Zentrum Mathematik, Technische Universita� t Mu� nchen, D-80290 Munich, Germany;
e-mail: spohn�mathematik.tu-muenchen.de.

2 Theoretische Physik, Ludwig-Maximilians-Universita� t, D-80333 Munich, Germany; e-mail:
zwerger�stat.physik.uni-muenchen.de.



power-law decay g(x)t |x|&'(T ) with a continuously varying exponent
'(T ).(3) Qualitatively this behaviour can be understood through the spin-
wave approximation

(%s)2
r(%.)2 (1.2)

with s=(cos ., sin .), neglecting the periodicity of the phase variable ..
Since the approximate action is Gaussian, the correlation function g(x)=
R(exp[i(.(x)&.(0))]) can be calculated easily, yielding the power law
decay |x|&'(T ) with '=T�2?. The vortex excitations lead, at low T, only to
a finite renormalisation of '.(3)

In one-dimensional models the spatial dimension can be mimicked by
a long range interaction with a decay as |n|&#, n being a point on the one-
dimensional lattice. One notices that for #=2 the action is again scale
invariant. For this marginal case, it was conjectured early by Thouless(4)

that the N=1 Ising model has a spontaneous magnetization m* below a
nonzero critical temperature Tc . The spontaneous magnetization jumps to
a finite value at Tc , yet the transition is continuous. This conclusion was
confirmed through an analysis of the equivalent Kondo problem(5, 6) and
later proven rigorously.(7, 8) A renormalization group calculation for long
range spin models in one dimension both for N=1 and a continuous
symmetry was performed by Kosterlitz.(9) Within a one loop calculation he
showed that there is always a low temperature spontaneous magnetization
provided 1<#<2 (#>1 being necessary to have an extensive free energy).
In the marginal case #=2 and for N�2, the associated beta function
vanishes quadratically near the trivial fixed point T=0. This indicates that
Tc=0 for N�2 and an exponential behaviour /(T )texp[2?2�(N&1)T]
for T � 0 of the susceptibility. Due to the power law interaction there can
be no finite correlation length, however.

In our present note we discuss the long distance behaviour of the two-
point function g(n). In the phase where m*=0 it is shown that if g(n) has
a power law decay at all, it is necessarily equal to that of the interaction.
In particular, a spin wave approximation is qualitatively incorrect for long
range models even at very low temperatures. Moreover, in the XY-case
with marginal #=2, our rigorous bounds rule out the appearance of a low
temperature phase with a continuously varying exponent '(T ) and infinite
susceptibility, which has been claimed in the literature on the basis of spin
wave theory and Monte Carlo simulations.(10�12) Our result is of direct
relevance to the problem of strong tunneling in the so called single electron
box, showing that the Coulomb blockade at zero temperature is not
destroyed even for large conductance.(13)
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To be more precise, we consider the spin Hamiltonian

H= & 1
2 :

m, n

J(m&n) sm } sn , (1.3)

where the couplings are ferromagnetic, J(n)�0, and decay as

J(n)$ |n|&# (1.4)

for |n| � �. As before the two-point function is defined by g(n)=(sn } s0)
in the infinite volume limit with free boundary conditions. Then

lim
n � �

g(n)=m*2, (1.5)

where m* is the spontaneous magnetization with the standard convention
that m*=0 for T>Tc and m*>0 for T<Tc . We define the scaling expo-
nent ' by

g(n)&m*2$ |n| &' (1.6)

for large n. The magnetic susceptibility is given by

/=
;
N

:
n

( g(n)&m*2). (1.7)

If '<1, then /=�.
The qualitative phase diagram for such ferromagnetic models is rather

well understood. For #>2 one has m*=0 and for #<2 one has m*>0 at
sufficiently low temperatures. In the marginal case, #=2, the number of
components becomes relevant. Whereas for the Ising model, N=1, m*>0
at low T, (7) for N�2 Simon(15) proves that m*=0 at any finite T. The
decay of the two-point function has been studied on a rigorous level
mostly for the Ising model with particular attention to the marginal case
#=2:(14) For T>Tc one has '=2. At Tc m* jumps to a non-zero value,
the Thouless effect, and ' jumps to zero. Below Tc , '(T ) increases with
decreasing T and locks to its high temperature value '=2 at some critical
value T c*<Tc . Although ' varies continuously, the overall behaviour is
obviously quite distinct from the standard Kosterlitz�Thouless scenario in
the short range d=2, N=2 case.

Here we show that if N=1, 2, 3, 4, if m*=0, and if g(n) is known
to have some decay already, then '=#. A lower bound of this form is
known from Griffiths second inequality for arbitrary N.(16) A corresponding
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upper bound is slightly more involved. It uses a Lieb�Simon type
inequality, (17, 18), which relies on Gaussian domination of the four-point
function. Although this is expected to hold in general, it has been proved
only for N=1, 2, 3, 4 components.(19)

In the following section we give the details of the argument. In fact, it
would be of interest to have a numerical solution of the nonlinear integral
equation (2.8), which could be used as a sharp test of Monte-Carlo simula-
tions.

2. BOUNDS ON THE TWO-POINT FUNCTION

We consider ferromagnetic spin models with N components in one
space dimension with Hamiltonian (1.3). Here sn is the N component spin
at lattice site n, n integer, with |sn|=1. The couplings J satisfy J(n)�0,
J(n)=J(&n) and have the asymptotic decay (1.4). To have an extensive
free energy we require #>1. The equilibrium distribution in finite volume
[&l,..., l] is given by

Z&1 exp[&;H] `
l

n= &l

$( |sn|&1) d Nsn . (2.1)

We choose free boundary conditions, i.e., sn=0 for n outside [&l,..., l]
and denote the corresponding expectation by ( } ) l . The two-point function
in the infinite volume limit l � � is then defined by

g(m&n)=(sm } sn) = lim
l � �

(sm } sn) l�0 (2.2)

If m*=0, g is independent of the boundary conditions.
To discuss the asymptotic decay of g we first note that by Griffiths

second inequality g is increasing in the couplings. Thus

g(n)�
1
Z | $( |s0|&1) d Ns0$( |sn|&1) d Nsn exp[;J(n) s0 } sn] s0 } sn (2.3)

which proves that g(n) cannot decrease faster than the couplings J(n).
The upper bound for g is slightly more complicated and uses the well

known Lieb�Simon type inequality. We define

4L=[u, v | either |u|�L, |v|>L or |u|>L, |v|�L] (2.4)
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and split the Hamiltonian as

H*=H1+*H2

H1=& 1
2 :

l

m, n=&l
m, n # 4c

L

J(m&n) sm } sn , (2.5)

H2=& 1
2 :

l

m, n=&l
m, n # 4L

J(m&n) sm } sn .

Differentiating with respect to * we obtain

(sm } sn)l=(sm } sn) l, *=0+|
1

0
d*

d
d*

(sm } sn) l, *

=(sm } sn) l, *=0+|
1

0
d*

;
2

:
l

u, v= &l
u, v # 4L

J(u&v)

_(( (sm } sn)(su } sv)) l, *&(sm } sn) l, * (su } sv) l, *) (2.6)

We choose |m|�L, |n|>L. Then the first term in (2.6) vanishes. For the
second term we use the Gaussian domination valid for N=1, 2, 3, 4(19

( (sm } sn)(su } sv)) l, *

�(sm } sn) l, * (su } sv) l, *

+
1
N

((sm } su) l, * (sm } sv) l, *+(sm } sv) l, * (sn } su) l, *) (2.7)

and set *=1 because (sm } sn) l, * is increasing in *. Finally we take l � �
and arrive at

g(n)�(;�N ) :
|u|�L

:
|v|>L

g(u) J(u&v) g(v&n) (2.8)

for |n|>L.
The integral inequality (2.8) is studied in [20]. In essence, one splits

the v-sum into terms with |v|�|n�2| and those with |v|>|n�2|. This yields
for |n|>L� , L� fixed,

g(n)�c$ |n|&#+:(n) g(n�2) (2.9)
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with :(n) � 0 as |n| � �. Iterating (2.9) results in a bound as

g(n)�c |n|&# (2.10)

The precise conditions, cf. ref. 20, Lemma 5.4, for the validity of (2.10) are
(i) for #>2 it is required that limn � � g(n)=0, which we know already
from m*=0, (ii) for #=2 it is required that g(n)�c1(1+log(1+|n| ))&1

with a suitable constant c1 depending on the prefactor of J, (iii) for 1<
#<2 it is required that g(n)�c2(1+|n| )#&2 with a suitable constant c2

depending on the prefactor of J. We conclude that under the stated condi-
tions on g(n) and if N=1, 2, 3, 4, m*=0, then

g(n)&const. |n|&# (2.11)

for large |n|.
For Ising spins the bounds (2.3), (2.10) have recently been sharpened, (21)

such as to determine also the prefactor in (2.11). Generalizing to the
present case, we conjecture that

lim
n � �

1
;J(n)

(s0 } sn) =
1
;2 N/2 (2.12)

The proof in ref. 21 uses the FK and percolation representation for the
lower bound and the random current representation for the upper bound,
which unfortunately are special to N=1.
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